If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.6x^2-8x+16=0
a = 0.6; b = -8; c = +16;
Δ = b2-4ac
Δ = -82-4·0.6·16
Δ = 25.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-\sqrt{25.6}}{2*0.6}=\frac{8-\sqrt{25.6}}{1.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+\sqrt{25.6}}{2*0.6}=\frac{8+\sqrt{25.6}}{1.2} $
| x/8+23=43 | | 1062=6(x+18) | | 8x+-23=6x+11=180 | | -7x-7=-103+5x | | 2x+3x-4=x+24 | | 4/3r−6=2/3r | | 2x+3x+x=189 | | -4x+3=x+8 | | 3r-6=-6+21 | | 3/5+x=-2x+5 | | 5n+327= | | 18x+10=8x | | 3m+8m=m | | x^+4x+2=0 | | -3x-7=-3-5x | | x+10=18-x | | 1.38+r=5.9 | | 88=8(n-82) | | -8=-2x+4-9=-5x-11=-3x+7 | | 2/3(x+6)=5x-43 | | 88=(n-82) | | 19^x-9=78 | | 2x^3+12=-42 | | x^2–13x–41=4 | | -7+6x=-x+49 | | (1/2n)+(1/2n)=n | | 6x+7=x=8 | | x^2+(x+5)^2=(25)^2 | | 7x+2+25×-14=180 | | y=-20/3-3 | | -4+h=16 | | 6x+7x=8 |